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ABSTRACT

A model for the emission of high energy (> 100 MeV) gamma rays from

the galactic disk has been developed and compared to recent SAS-2 obser-

vations. In the calculation, it is assumed that (1) the high energy

galactic gamma rays result primarily from the interaction of cosmic rays

with galactic matter, (2) on the basis of theoretical and experimental

arguments the cosmic ray density is proportional to the matter density on

the scale of galactic arms, and (3) the matter in the galaxy, atomic and

molecular, is distributed in a spiral pattern consistent with density wave

theory and the experimental data on the matter distribution that is avail-

able, including the 21-cm HI line emission, continuum emission from HII

regions, and data currently being used to estimate the H2 density. The

calculated tII gamma ray distribution is in good agreement with the SAS-2

observations in both relative shape and absolute flux. As a corollary, the

non-uniform cosmic ray distribution of this model tends to support the

galactic origin of the fraction of the cosmic rays which are important in the

production of high energy photons. Modifications of the basic model show

that the gamma ray flux is relatively sensitive to large variations of the

assumed distribution of molecular hydrogen in the galaxy.

*NAS-NRC Senior Postdoctoral Resident Research Associate on leave from LFCTR,
Istituto di Fisica dell' Universita di Milano, Italy
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Subject headings: Galactic gamma rays -- spiral structure -- galactic cosmic

rays -- interstellar gas

I. Introduction

The most striking feature of the celestial sphere when viewed in

the frequency range of high energy gamma rays (> 100 MeV) is the emission from

the galactic plane, which is particularly intense in the galactic longi-

tudinal region from about 3000 to approximately 500 . The energetic galactic

gamma rays are generally thought to result primarily from the interaction of

cosmic rays with interstellar matter. This concept is supported by the

level of intensity being approximately that expected on the basis of cosmic

ray interactions with galactic matter (e.g. Kraushaar et al., 1972; Stecker,

1970; Cavallo and Gould, 1971; Kniffen et al., 1973), and there being no

other proposed source which would yield an adequate intensity without what

appear to be rather extreme assumptions.

When the problem of the high energy gamma radiation was examined in

more detail, Kraushaar et al. (1972) showed that the distribution of cosmic

rays appeared inconsistent with a uniform cosmic ray density in the galaxy

on the basis of the center to anticenter gamma ray intensity ratio. Considering

the geometrical distribution of the intense high-energy gamma radiation,

Kniffen et al. (1973) were led to the conclusion that the source of the

gamma rays was very likely concentrated in the spiral arm segments. Bignami

and Fichtel (1974) proceeded further and proposed that in general the cosmic-

rays are enhanced where the matter is also greatest, namely in the arm seg-

ments. This hypothesis was based on the work of Bierman and Davis (1960)

and Parker (1966 and 1969), who showed that the magnetic fields and cosmic-

rays can only be contained by the mass of the gas through which the magnetic
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fields penetrate; and, hence, they are tied to the matter. The calculated

intensity showed general agreement with the longitudinal gamma ray distri-

bution within the limitations of the cylindrical symmetry of this simplified

model.

There have been many other attempts to explain the high energy galactic

gamma radiation, including that of Strong et al: (1973) and Schlickeiser

and Thielheim, (1974), who propose correlating the cosmic rays with the

current best estimate of the galactic magnetic field, Stecker et al. (1974)

who use a central galactic cosmic ray acceleration theory, Cowsik and Voges

(1974), who consider the Compton process, and Solomon and Stecker (1974)

who assume a constant cosmic ray density, but a high molecular hydrogen

density. These theories and a general discussion of previous work are sum-

marized and discussed by Fichtel et al. (1975).

The specific purpose of this work is to pursue further the encouraging

results of the preliminary model of Bignami and Fichtel (1974). Assuming,

as in the original paper, that, on the scale of arm segments, the cosmic

ray density is proportional to the matter density, the approximation of a

cylindrically-symmetric galaxy is replaced by the best available represent-

ation of the interstellar gas distribution. The expected high energy gamma

ray distribution calculated for this model is compared to recent observations,

and the implications of the comparison are discussed.

I. Basic Concept and Calculation

Beyond the basic theoretical considerations of Parker (1969), mentioned

in the introduction which suggest this concept, it is known that the local

energy density of the cosmic-rays is about the same as the estimated energy

density of the average magnetic fields and the kinetic motion of matter.
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Together the total pressure of these three effects is estimated to be

approximately equal to the maximum that the gravitational attraction can

hold in equilibrium. This evidence not only supports the theoretical concept

of Parker (1969), but also suggests that thecosmic-ray density may generally

be as large as would be expected under quasi-equilibrium conditions. This

concept is also given some theoretical support by the calculated slow diffusion

rate of cosmic rays (e.g. Parker, 1969; Lee, 1972; Wentzel, 1974) in the

magnetic fields of the galaxy based on the cosmic ray lifetime and the small

cosmic ray anisotropy, and the likely high production rate of cosmic rays,

which together suggest that in general the cosmic rays should be plentiful

in a given region and will not move quickly to less dense regions. The

concentration of GeV cosmic rays in spiral arms has also been supported theo-

retically recently by Wentzel (1974) who uses the basic arguments of Parker

(1966 and 1969), but adds a discussion on the importance of cosmic ray

scattering to the conclusion. Also, the observed increased thickness of the

hydrogen disk at the spiral arms (Jackson and Kellman, 1974) may be attri-

butable to the increased cosmic ray pressure in the arms. Finally, the

continuum radio emission generally thought to be synchrotron radiation from

cosmic ray electrons interacting with the galactic magnetic fields shows

maxima in the direction of the spiral arms (e.g. Price, 1973; Green, 1974),

again indicating some concentration of at least the cosmic ray electrons

within the spiral arms.

The number and energy spectrum of the gamma rays produced by cosmic

rays interacting with interstellar matter have been calculated in detail for

the case of the-cosmic radiation in interstellar space by several authors,
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e.g. Stecker (1973) and Cavallo and Gould (1971) for the proton interactions,

and Cheung (1974) for the case of cosmic ray electrons using the bremsstrah-

lung cross sections of Koch and Motz (1959) and the electron spectrum deduced

by Daugherty et al. (1975).

The flux of gamma rays with energies greater than E (E=100 MeV in this

case) at a distance r is given by the expression

(E) = (1/4) J[Sn(E)gn(r,II,b I I ) + Se ge(r,Al ,bll)]N(r, I,bll)dr do (1)

where S is the number of gamma rays produced per second on the average for one

interstellar hydrogen nucleon plus electron and a cosmic ray density, com-

position and spectrum equal to that near the earth, g has been introduced

to represent the ratio of the cosmic ray density to that in the vicinity

of the solar system, the subscripts on S and g refer to cosmic ray nucleons,

"n", and cosmic ray electrons, "e", and N is the total interstellar number

density for atomic and molecular hydrogen. The coordinates r, II, and bI I

refer to a sun centered coordinate system. For the cosmic ray nucleonic

component, the effect of the smaller contribution of nuclei heavier than

hydrogen is included in S. In the case of the electrons, S includes the

appropriately weighted Z(Z+I) factor, which is slightly larger than the 2.0

for atomic hydrogen.

Sn is estimated to have a value of 1.3l10-2 S/sec (Stecker, 1973) and Se is

.210- a/sec (Cheung,1974). Considering this fact, it will be assumed in

this paper that Sngn + Sege may be replaced by Sgn, where S = Sn + Se, to a

good approximation. This approximation neglects the fact that some portion

of the electrons seen locally are secondaries (generally estimated to be about

15% to 40%iFanselow, et. al. 1969; Daugherty, et. al., 1975-,and the relative
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number of secondaries will vary with the matter density and lifetime. If,

however, the secondary electrons represent 25% of the total local electron

population, the secondaries would have to increase by a factor of five to

double the total electron component. Since Se is only 15%-of Sn above

100 MeV, it seems unlikely that this approximation has a serious effect in

the high energy region to be considered here. At lower energies electrons are

of considerably greater importance, and that problem is the subject of future

work. Thus,equation (1) becomes

m (E) =  1. 1.5 10-26 3 gn (r,II1,b ) N (r,IIl,bI I) dr d Q (2)

Following the discussion in the introduction, the cosmic ray intensity

on the scale of galactic arms is assumed to be proportional to the matter

density. Hence, the simplest approach is then to let gn be proportional to

the total matter, namely N, and normalize it to the estimated local value;

hence:

gn(r,£ ,bI I ) = N (r,eI,bII)/N (r = 0) (3)

III. Matter Distribution

A. General

Although the distribution of the interstellar matter in our galaxy can

be studied in a number of ways, the only method that has been able to probe

the large scale spiral features over much of the galactic disc is the obser-

vation of the 21 cm line of neutral hydrogen. The radio astronomy measure-

ments can be unfolded and smoothed with the help of the density wave theory

to produce a map of the grand design of the spiral pattern, as in figure 1,

due to Simonson (1975). In what follows, the assumption is made that all

the interstellar hydrogen, i.e., neutral atomic, ionized atomic and molecular,
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is modulated by the same basic density wave spiral pattern of figure 1.

However, the quantitative density distributions for the atomic and the mole-

cular gas will be discussed separately because the measurements so far avail-

able on the galactic H2 are characterized by a substantially greater

uncertainty than those relating to the atomic component.

B. Atomic Hydrogen

The function nH (r,£II,b i) represents the distribution of the galactic

atomic hydrogen densities in atoms per cm as a function of the heliocentric

distance, r, and of the galactic coordinates, II and bI I . In the model to

be discussed here, nH(r,I ,bI I ) is constructed according to the following

considerations:

The map in figure 1 gives only the density maxima, or "ridges", of the

arms in the equatorial plane. Following the classic Lin-Shu (1967) model

as well as similar assumptions made in more recent work (e.g. Price, 1973;

Cowan et. al., 1974), a width of 1 kpc has been given to each arm for

simplicity, and the equatorial density has been maintained constant within

the arm. The only exception to the 1 kpc width is the local or Orion arm

which, following Yuan (1969), has been given a .5 to .7 kpc width in this

model.

The numerical values of the equatorial neutral and ionized atomic :

hydrogen (HI + HII) densities, nH(r,)ll,O), were deduced from the radio

measurements summarized by Kerr and Westerhout (1965) and Westerhout (1970)

using density wave theory. These measurements refer to the 21 cm line for HI

and to continuum emission from HII regions. For the region within about

1 kpc from the sun, data are now available both from radio (Falgarone and

Lequeux, 1973 and references herein) and recent satellite measurements from
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OAO-2 and Copernicus (Macchetto and Panagia, 1973; Jenkins and Savage, 1974),

and the agreement is good giving a value of about .4 atoms/cc. The actual

values of nH(r,y ,0) which have been used in this work are as follows:

.3 to .2 for interarm regions outside the solar circle

.4 for arms outside the solar circle (e.g. the Perseus arm)

.4 for all interarm regions inside the solar circle and at the Sun

.6 for the Orion or local arm

.8 for the Carina arm

1.2 for the Sagittarius arm

1.5 for the other inner arms (Norma, Scutum and 4 kpc), as well

as for a central region of 1 kpc radius.

As seen, the arm-interarm density ratio decreases from 3.7 for the inner arms

to 1.5 for the less marked external features. The decrease is supported

by the density wave theory (Roberts and Yuan, 1970) and HI measurements of

M31 (Guibert, 1974).

The decrease nH(Z) perpendicular to the galactic equatorial plane has

been taken to have the quasi-gaussian shape given by Schmidt (1956). The

change of this shape.into an exponential one several hundred parsecs above

the plane (Cowan et al.. 1974) introduces only a negligible correction.

The variation with galactocentric distance - and galactic longitude of the /

half-thickness of the hydrogen disc, Z l/2(2,)II), has been taken from the

recent measurements of Jackson and Kellman (1974) and varies from 50 pc for

Sg 2 kpc to 400 pc for ' > 12 kpc.

By use of figure 1 and of the information contained in the preceeding

discussion, it is then possible to construct a map of nH(r,11,0) in

steps of 100 pc in r and 10 in I; the third dimension, bI I, is added by
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use of the nH(Z) function with a precision of 10 in bI I for r < 6 kpc or

10 pc in Z for r > 6 kpc.

C. Molecular Hydrogen

While the importance of significant amounts of interstellar H2 for

the production of high energy photons has been recognized for some time

(Stecher and Stecker, 1970), the measurements presently available on galactic

H2 are scarce. They consist of direct measurements in the vicinity of the

Sun by the Copernicus Satellite (Spitzer et al., 1973; Jenkins and Savage,

1974) and of indirect microwave measurements of the line-of-sight densities

of CO molecules for the AII quadrant O* to 900 (Scoville and Solomon,

1974, also given in Solomon and Stecker, 1974). The measurements in the

vicinity of the Sun ( 4 1 kpc) seem to suggest that H2 is about twice as

abundant as the atomic (HI and HII) hydrogen. The interpretation of the

line-of-sight CO emission measurements in terms of the galactic distribution

of the H2 density (as given by Solomon and Stecker, 1974) is still at present

rather uncertain, both in terms of the unfolding of the CO data itself and

of its relation to the H2 densities. There is, however, the suggestion

that the amount of H2 can be large and variable with the galactocentric

distance, w.

Assuming that the large-scale spiral structure modulates all the

interstellar gas, the molecular hydrogen component can be treated as a

numerical factor, K(Q), times which the atomic density function nH(r,jII,bII)

is to be multiplied. In view of the paucity of the experimental evidence,

two different cases have been treated. The values of the K(5) factor are

given in Table 1 for both cases. Case 1 assumes that the molecular hydrogen

factor, K(i) = NH2 + NHI + HII is constant and equal to 2 (its value at the

NHI+HII
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Sun) up to = 10 kpc and decreases to 1.4 outside the solar circle. Case 2

assumes a K(w) dependence that can be deduced from the recent Scoville and

Solomon measurements of the CO line-of-sight densities. Using a transformation

to a Sun-centered coordinate system, it is then possible to construct the

total interstellar density function of eq(l):

N (r,AII,bI) = K (-)*nH(r,.I,bll).

The calculation presented here reaches a galactocentric distance

W = 16 kpc within which the average equatorial density of the total inter-

stellar gas is .91 nuclei/cmP.

TABLE 1

Molecular Hydrogen Distribution

(kpc) 0 2.6 4.2 5.0 6.0 7.5 8.0 10.2

K(), Case 1 2 2 2 2 2 2 2 1.4

K(w), Case 2* 415 1.3 2.1 3.8 2.4 2.3 1.5 1.2

*This distribution is based on microwave observations of Scoville and

Solomon (1974) which cover the range 0o<IgI<900, and hence the model

calculations are relevant only for that region.

IV. RESULTS AND DISCUSSIONS

Following the procedure discussed in section II, the galactic gamma

ray distribution was calculated using the spiral pattern matter distribution

given in section III and shown in figure 1. According to the concept that
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the cosmic ray density was proportional to the matter density, equation 3

was used for g. Figure 2 presents the results of the primary calculation

using the K (W) values of Case 1, Table 1, along with the recent data of

SAS-2 (Fichtel et al., 1975) for gamma rays with measured energies greater

than 100 MeV.

The general features of the longitude distribution are seen to be

reproduced well by the calculation, particularly considering that the

computed results are based directly on the physical model without any normal-

ization to the observations. In the central region, the calculation shows the

same broad, relatively flat distribution as the data. The peaks corresponding

to the Scutum, Norma, and 4-Kpc arms are seen in the longitude ranges

310°-320° , 330-3350, and 340°-345° , respectively, in both the experimental

and computed results. On the opposite side of the center, neither the data

nor the calculation show any pronounced peaks in the 10-400 longitude range,

while both have a minimum value between 550 and 650. Some details of the

observed longitude distribution are not reproduced by the model, such as the

small excess around III = 0o seen in the data and the small peak between

450 and 500 in the calculation. The former is understandable since the matter

distribution in the center (3550 < II < 100) is very uncertain and probably

underestimated especially as far as molecular clouds are concerned. With

regard to the latter, the relatively local Sagittarius (III 450) and

Cygnus (II 800) peaks are very sensitive to both the local matter concen-

tration and the exact position of the Sun relative to the inner boundary

of the Orion Spur. The peak to valley ratio for the Scutum, Norma, and 4 kpc

arms (longitude ranges of 310'-320', 330'-3350, and 3400 to 3450) seem to be
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more pronounced in the experimental data than in the calculated results.

Although the statistical level of the data is such that conclusions of this

nature can only be considered tentative, or suggestive, it is true that the

simplified approach to the matter density distribution in the arms used here,

i.e. a constant value over the width of 1 kpc rather than a rise to a maximum

at the ridge from the sides, tends to make the peaks less pronounced than 
a

more realistic model. Both the density wave theory (e.g. Roberts and Yuan,

1970) and measurements of external galaxies (e.g. Mathewson et al., 1972;

Guibert, 1974) indicate that the density within an arm decreases outward

from the high-compression region of maximum density near the inner side.

Before discussing two small variations from this basic model, it should

be mentioned that an alternate view of the cosmic ray origin is that the cosmic

rays are extragalactic rather than galactic. If they are not galactic then

the argument that they must be contained predominantly in the arm segments

is no longer valid. In fact, if they represent a uniform extragalactic flux,

they would most likely be uniform in the galaxy simply because 
of the uniform

pressure. In this case, a calculation similar to the one just discussed,

but with g set equal to 1 in equation (1) gives a ratio for the center region

to the anticenter, in regions of no strong sources, of about 2 to 1 rather than

the observed value of 7 or 8 to 1, confirming the earlier similar conclusion

mentioned in the introduction. This seems to be a fairly strong piece of

evidence against the extragalactic origin of the major fraction of cosmic

rays, i.e. of the protons between 1 and 10 GeV. It is already known that

unless the matter is well below the 10-
s to 10- 6 atoms/cm3 range in inter-

galactic space, the cosmic rays cannot exist throughout the universe 
at the

local density or the diffuse gamma radiation would be well above its measured
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value, although, from that point of view, they could exist at the local

level within the local supercluster (e.g. Fichtel, 1974). The evidence

here, then, goes a step further and suggests that there is specific evidence

to support the local galactic origin for the GeV cosmic rays observed

in the vicinity of the earth, consistent with the presently more common

theoretical position.

In the context of this model, it is possible to calculate the

total gamma ray output of the galaxy. The value obtained for the galactic

gamma ray luminosity (>100 MeV) is 11.0.1042 sec - .

The first variation to the basic model used the K(3) distribution

given in Case 2, Table 1, based on the work of Scoville and Solomon

(1974). Because this molecular hydrogen distribution was derived from

measurements in the 00< II<900 quadrant, the resulting gamma ray distri-

bution can only be compared with the SAS-2 data in this longitude

interval. The calculation shows that whereas the general level in the

central region and anticenter regions agree reasonably well with the

data, there is a significant peak in the 20o-35' range and an extremely

large peak near II = 00. These peaks correspond respectively to the

"5 kpc" feature and the strong central peak in the CO measurements

used to derive the molecular hydrogen densities. These peaks stand well

above the SAS-2 data, in contrast to the results of the basic model.

Without a much more exact knowledge of the molecular hydrogen distri-

bution, it is not possible to discuss the overall comparison of this

variation to the basic model. Nevertheless, these results show that

the gamma ray flux is relatively sensitive to the distribution

of molecular hydrogen.
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In the second variation of the basic model, the possibility was

considered that the cosmic rays extend beyond the galactic hydrogen

dis. This calculation set the thickness of the cosmic ray distribution

at twice the thickness of the hydrogen disk, while still normalizing

the cosmic ray flux to the local value. The calculation shows that

a thicker cosmic ray disk has little effect on the longitude distri-

bution except to increase its absolute value somewhat, primarily be-

cause both matter and cosmic rays are necessary to produce gamma rays,

and therefore, extending the width of only one does not create a very

marked gamma ray increase. Since the resulting distribution is very

similar to Figure 2, with only the intensity being slightly higher

everywhere, the results are not shown here.

Both the basic model and the variation in which the cosmic

rays are assumed to have a thicker disk than the matter have been

used to compute the latitude distribution for the gamma radiation in

the range 3300<II <300. Folding the computed results through the

SAS-2 angular resolution function for high energy gamma rays produces

a distribution which is wider than the angular resolution itself,

but not quite as wide as the experimental latitude distribution

(Fichtel, et al., 1975). This small additional broadening may be

due to local matter (e.g. Lindblad, et al., 1973) which is not in-

cluded in the present model and does not alter the predicted longitude

distribution significantly.



- 15-

V. CONCLUSION

The good agreement of the predicted intensity distribution with the

high energy gamma ray data from SAS-2 seems to be a strong argument for the

basic thesis of this paper, namely that the cosmic ray density is correlated

with the matter density, which on a broad scale is predominately in a spiral

arm density wave pattern, and that the observed gamma rays result primarily

from cosmic ray interactions with the interstellar matter. As a corollary,

this uneven cosmic ray distribution tends to support the galactic origin of

the fraction of the cosmic rays which are important in the production of

high energy photons.

Finally, the association of the high energy galactic gamma rays with

cosmic ray-interstellar matter interactions suggests that, in the future,

gamma ray astronomy together with astronomy at other wavelengths holds

great promise for the study of the galaxy both in terms of the matter

distribution and the cosmic ray pressure distribution. Gamma ray instru-

ments of the future will have the sensitivity and the angular resolution

to study the cosmic ray matter distribution not only on the broad scale

of arms, but on the finer scale of variations within arms. Then the

question of cosmic ray expansion from sources and their propogation and

distribution should also be studied in detail to see the effects of the cosmic

ray gas pressure and to study galactic structure in finer detail.
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FIGURE CAPTIONS

Figure 1 -- 4,smoothed spatial diagram of the locations of the maxima of

the galactic matter density deduced from 21-cm HI line measure-

ments and the density wave theory (Simonson, 1975).

Figure 2 -- Longitude distribution of the galactic high energy gamma ray

emission deduced from the spiral arm model, shown by a heavy

solid line. The SAS-2 data points, connected by a thin line,

are shown for comparison. The increase around I = 2650 is due to

the Vela supernova remnant. The increase from II = 1800 to 2050

is due to the Crab nebula and possibly other sources.

(Fichtel, et al., 1975). Both the data and the calculation

are summed from -10' to +100 in galactic latitude. The

diffuse background, shown by a dashed line, has been added to

the model calculation to give the gamma ray flux shown by the

heavy solid line.
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